Title :
Birkhoff polytopes, heat kernels and graph complexity
Author :
Escolano, Francisco ; Hancock, Edwin R. ; Lozano, Miguel A.
Author_Institution :
Univ. of Alicante
Abstract :
In this paper we use doubly stochastic matrices to establish a link between Birkhoff polytopes and heat kernels on graphs. Based on this analysis we construct a multi-dimensional graph complexity measure characterized by the sequence of entropies associated to the Birkhoff-von Neumann decompositions (structural snapshots) of kernels with variable beta (range interaction factors). This construction is motivated by analogies with solving of traffic and transportation problems. We test the permutation invariance of the measure and demonstrate its application to graph embedding.
Keywords :
computational complexity; graph theory; matrix algebra; matrix decomposition; stochastic processes; Birkhoff polytope; Birkhoff-von Neumann decomposition; graph complexity; heat kernel; multidimensional graph complexity measure; stochastic matrix; Entropy; Kernel; Laplace equations; Matrix decomposition; Pattern recognition; Probability distribution; Stochastic processes; Switches; Testing; Transportation;
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
DOI :
10.1109/ICPR.2008.4761921