• DocumentCode
    2500446
  • Title

    Tensor-Driven Hyperspectral Denoising: A Strong Link for Classification Chains?

  • Author

    Martín-Herrero, Julio ; Ferreiro-Armán, Marcos

  • Author_Institution
    Dept. Signal Theor. & Commun., Univ. of Vigo, Vigo, Spain
  • fYear
    2010
  • fDate
    23-26 Aug. 2010
  • Firstpage
    2820
  • Lastpage
    2823
  • Abstract
    We show how a tensor-driven anisotropic diffusion denoising method affects the performance of a classifier trained to discriminate among vine varieties in noisy hyper spectral images. We compare the classification statistics on the original and denoised images and discuss the convenience of this kind of preprocessing for classification in hyperspectral images.
  • Keywords
    image classification; image denoising; tensors; classification chain; classification statistics; denoised image; hyperspectral image classification; noisy hyper spectral image; tensor-driven anisotropic diffusion denoising; tensor-driven hyperspectral denoising; Anisotropic magnetoresistance; Hypercubes; Hyperspectral imaging; Noise reduction; Pixel; Support vector machines; anisotropic diffusion; denoising; hyperspectral imaging;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2010 20th International Conference on
  • Conference_Location
    Istanbul
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4244-7542-1
  • Type

    conf

  • DOI
    10.1109/ICPR.2010.691
  • Filename
    5597053