DocumentCode :
25262
Title :
An Upper Bound on the Complexity of Multiplication of Polynomials Modulo a Power of an Irreducible Polynomial
Author :
Kaminski, M. ; Chaoping Xing
Author_Institution :
Dept. of Comput. Sci., Technion - Israel Inst. of Technol., Haifa, Israel
Volume :
59
Issue :
10
fYear :
2013
fDate :
Oct. 2013
Firstpage :
6845
Lastpage :
6850
Abstract :
Let μq2(n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q2 element field BBF q2. It is shown that for all odd q and all n = 1,2,..., liminfk → ∞[( μq2(n,k))/ k n] ≤ 2 (1 + [ 1/( q - 2)] ). For the proof of this upper bound, we show that for an odd prime power q, all algebraic function fields in the Garcia-Stichtenoth tower over BBF q2 have places of all degrees and apply a Chudnovsky like algorithm for multiplication of polynomials modulo a power of an irreducible polynomial.
Keywords :
computational complexity; polynomials; Chudnovsky like algorithm; Garcia-Stichtenoth tower; algebraic function fields; irreducible polynomial; polynomial multiplication; polynomials modulo; Complexity theory; Indexes; Poles and towers; Poles and zeros; Polynomials; Terrorism; Upper bound; Algebraic function fields; bilinear algorithms; finite fields; polynomial multiplication; the Garcia–Stichtenoth tower;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2013.2272072
Filename :
6553290
Link To Document :
بازگشت