DocumentCode :
2527380
Title :
Maximum significance clustering of oligonucleotide microarrays
Author :
De Ridder, Dirk ; Reinders, Marcel J. T.
Author_Institution :
Fac. of Electr. Eng., Math. & Comput. Sci., Delft Univ. of Technol., Netherlands
fYear :
2005
fDate :
8-11 Aug. 2005
Firstpage :
93
Lastpage :
94
Abstract :
Affymetrix high-density oligonucleotide microarrays measure expression of DNA transcripts using probe sets, i.e. multiple probes per transcript. Usually, these multiple measurements are transformed into a single probeset expression level before data analysis proceeds; any information on variability is lost. In this work we demonstrate how individual probe measurements can be used in a statistic for differential expression. Furthermore, we show how this statistic can serve as a clustering criterion. A novel clustering algorithm using this maximum significance criterion is demonstrated to be more efficient with the measured data than competing techniques for dealing with repeated measurements, especially when the sample size is small.
Keywords :
DNA; arrays; cellular biophysics; data analysis; genetics; molecular biophysics; pattern clustering; DNA expression; affymetrix oligonucleotide microarray; clustering algorithm; competing technique; data analysis; differential expression; oligonucleotide microarray clustering; probe measurement; probeset expression level; Bioinformatics; Central nervous system; Clustering algorithms; Clustering methods; Conferences; Couplings; Embryo; Measurement standards; Probes; Resistors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Systems Bioinformatics Conference, 2005. Workshops and Poster Abstracts. IEEE
Print_ISBN :
0-7695-2442-7
Type :
conf
DOI :
10.1109/CSBW.2005.91
Filename :
1540554
Link To Document :
بازگشت