DocumentCode
2529686
Title
Redundancy resolution of manipulators through torque optimization
Author
Hollerbach, John M. ; Suh, Ki C.
Author_Institution
MIT Artificial Intelligence Laboratory, Cambridge, MA
Volume
2
fYear
1985
fDate
31107
Firstpage
1016
Lastpage
1021
Abstract
Methods for resolving kinematic redundancies of manipulators by the effect on joint torque are examined. When the generalized inverse is formulated in terms of accelerations and incorporated into the dynamics, the effect of redundancy resolution on joint torque can be directly reflected. One method chooses the joint acceleration null-space vector to minimize joint torque in a least squares sense; when the least squares is weighted by allowable torque range, the joint torques tend to be kept within their limits. Contrasting methods employing only the pseudoinverse with and without weighting by the inertia matrix are presented. The results show an unexpected stability problem during long trajectories for the null-space methods and for the inertia-weighted pseudoinverse method, but rarely for the unweighted pseudoinverse method. Evidently a whiplash action develops over time that thrusts the endpoint off the intended path, and extremely high torques are required to overcome these natural movement dynamics.
Keywords
Acceleration; Arm; Jacobian matrices; Kinematics; Least squares methods; Manipulator dynamics; Null space; Robots; Torque; Wrist;
fLanguage
English
Publisher
ieee
Conference_Titel
Robotics and Automation. Proceedings. 1985 IEEE International Conference on
Type
conf
DOI
10.1109/ROBOT.1985.1087285
Filename
1087285
Link To Document