• DocumentCode
    2532896
  • Title

    A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems

  • Author

    Wang, Shunxu

  • Author_Institution
    Coll. of Sci., Huaihai Inst. of Technol., Lianyungang, China
  • fYear
    2010
  • fDate
    18-20 Dec. 2010
  • Firstpage
    111
  • Lastpage
    115
  • Abstract
    This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.
  • Keywords
    eigenvalues and eigenfunctions; mathematics computing; parallel processing; Ritz pairs; extreme eigenpairs; parallel computer; parallel refined Jacobi Davidson method; quadratic eigenvalue problems; Approximation methods; Eigenvalues and eigenfunctions; Equations; Integrated circuits; Jacobian matrices; Matrix decomposition; Parallel processing; Jacobi-Davidson method; Parallel algorithm; Quadratic eigenvalue problems; Refined method;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Parallel Architectures, Algorithms and Programming (PAAP), 2010 Third International Symposium on
  • Conference_Location
    Dalian
  • Print_ISBN
    978-1-4244-9482-8
  • Type

    conf

  • DOI
    10.1109/PAAP.2010.62
  • Filename
    5715071