Title :
Beta Process Multiple Kernel Learning
Author :
Bingbing Ni ; Teng Li ; Moulin, Philippe
Author_Institution :
Adv. Digital Sci. Center, Singapore, Singapore
Abstract :
In kernel based learning, the kernel trick transforms the original representation of a feature instance into a vector of similarities with the training feature instances, known as kernel representation. However, feature instances are sometimes ambiguous and the kernel representation calculated based on them do not possess any discriminative information, which can eventually harm the trained classifier. To address this issue, we propose to automatically select good feature instances when calculating the kernel representation in multiple kernel learning. Specifically, for the kernel representation calculated for each input feature instance, we multiply it element-wise with a latent binary vector named as instance selection variables, which targets at selecting good instances and attenuate the effect of ambiguous ones in the resulting new kernel representation. Beta process is employed for generating the prior distribution for the latent instance selection variables. We then propose a Bayesian graphical model which integrates both MKL learning and inference for the distribution of the latent instance selection variables. Variational inference is derived for model learning under a max-margin principle. Our method is called Beta process multiple kernel learning. Extensive experiments demonstrate the effectiveness of our method on instance selection and its high discriminative capability for various classification problems in vision.
Keywords :
Bayes methods; image classification; inference mechanisms; learning (artificial intelligence); Bayesian graphical model; MKL learning; beta process multiple kernel learning; kernel representation; kernel trick; latent binary vector; latent instance selection variables; max-margin principle; training feature instances; variational inference; Approximation methods; Graphical models; Kernel; Linear programming; Optimization; Training; Vectors; Beta process; classification; instance selection; multiple kernel learning; variational inference;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
Conference_Location :
Columbus, OH
DOI :
10.1109/CVPR.2014.128