DocumentCode :
2547454
Title :
Genetic Algorithms based parameters identification of induction machine ARMAX model
Author :
Mansouri, A. ; Krim, F.
Author_Institution :
Lab. of Power Electron. & Ind. Control, Univ. of Setif, Sétif, Algeria
fYear :
2011
fDate :
6-7 June 2011
Firstpage :
182
Lastpage :
189
Abstract :
For a high dynamic performance induction machine (IM) control, parameters have to be precisely known. In this paper we propose a detailed study of the extensive recursive least squares (ERLS) method to estimate these parameters in real time. We use this algorithm with its various extensions to identify the parameters of the Autoregressive Moving Average with Extra Inputs (ARMAX) model associated to the IM. This method is based on the minimization of a quadratic criterion. As advanced technique, this paper proposes Genetic Algorithms (GA) to identify model parameters with biased estimations. A comparison of these two methods confirms the effectiveness of the last one.
Keywords :
asynchronous machines; autoregressive moving average processes; genetic algorithms; least squares approximations; machine control; parameter estimation; autoregressive moving average; extensive recursive least squares; extra inputs; genetic algorithms; induction machine ARMAX; induction machine control; minimization; parameters identification; quadratic criterion; Adaptation models; Autoregressive processes; Equations; Equivalent circuits; Mathematical model; Rotors; Stators; ARMAX Model; Extensive Recursive Least Squares; Genetic Algorithms; Induction Machine; Parameter Identification; optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Engineering and Optimization Conference (PEOCO), 2011 5th International
Conference_Location :
Shah Alam, Selangor
Print_ISBN :
978-1-4577-0355-3
Type :
conf
DOI :
10.1109/PEOCO.2011.5970389
Filename :
5970389
Link To Document :
بازگشت