DocumentCode
25635
Title
Theoretical Analysis of Plasmonic Modes in a Symmetric Conductor–Gap–Dielectric Structure for Nanoscale Confinement
Author
Li Wei ; Aldawsari, Sarah ; Wing-Ki Liu ; West, Brian R.
Author_Institution
Dept. of Phys. & Comput. Sci., Wilfrid Laurier Univ., Waterloo, ON, Canada
Volume
6
Issue
3
fYear
2014
fDate
Jun-14
Firstpage
1
Lastpage
10
Abstract
A hybrid plasmonic waveguide is considered as one of the most promising architectures for long-range subwavelength guiding. The objective of this paper is to present a theoretical analysis of plasmonic guided modes in a symmetric conductor-gap-dielectric (SCGD) system. It consists of a thin metal conductor symmetrically sandwiched by two-layer dielectrics with low-index nanoscale gaps inside. The SCGD waveguide can support ultra-long range surface plasmon-polariton mode when the thickness of a low-index gap is smaller than a cutoff gap thickness. For relatively high index contrast ratios of the cladding to gap layers, the cutoff gap thickness is only a few nanometers, within which the electric field of the guided SCGD mode is tightly confined. The dispersion equations and approximate analytical expressions of the cutoff gap thickness are derived in order to characterize the properties of the guided mode. Our simulation results show that the cutoff gap thickness can be tailored by the metal film thickness and the indices of the cladding and gap materials. The geometrical scheme for lateral confinement is also presented. Such a structure with unique features of low-loss and strong confinement has applications in the fabrication of active and passive plasmonic devices.
Keywords
metallic thin films; nanophotonics; optical waveguides; plasmonics; polaritons; surface plasmons; cutoff gap thickness; dispersion equations; electric field; hybrid plasmonic waveguide; low-index nanoscale gaps; metal film thickness; nanoscale confinement; plasmonic guided modes; surface plasmon-polariton mode; symmetric conductor-gap-dielectric structure; theoretical analysis; thin metal conductor; two-layer dielectrics; Equations; Films; Indexes; Metals; Optical waveguides; Plasmons; Propagation losses; Surface plasmons; guided wave; integrated optics; waveguides;
fLanguage
English
Journal_Title
Photonics Journal, IEEE
Publisher
ieee
ISSN
1943-0655
Type
jour
DOI
10.1109/JPHOT.2014.2326677
Filename
6823089
Link To Document