• DocumentCode
    2569286
  • Title

    Multichannel ARMA signal information fusion wiener estimator based on Kalman filtering

  • Author

    Zhuo, Chen ; Shuli, Sun

  • Author_Institution
    Dept. of Autom., Heilongjiang Univ., Harbin
  • fYear
    2008
  • fDate
    2-4 July 2008
  • Firstpage
    4571
  • Lastpage
    4575
  • Abstract
    Using Kalman filtering theory, based on the autoregressive moving average (ARMA) innovation model, the white noise estimator and the measurement predictor, a distributed information fusion Wiener estimator is presented for multichannel ARMA signal with multiple sensors by the matrix weighting fusion algorithm in the linear minimum variance sense. It has the asymptotical stability. It can handle the filtering, smoothing and prediction problems in a unified framework. A simulation example verifies its effectiveness.
  • Keywords
    Kalman filters; asymptotic stability; autoregressive moving average processes; estimation theory; matrix algebra; prediction theory; sensor fusion; smoothing methods; white noise; Kalman filtering theory; asymptotical stability; autoregressive moving average innovation model; distributed information fusion Wiener estimator; matrix weighting fusion algorithm; measurement predictor; prediction problem; smoothing problem; white noise estimator; Autoregressive processes; Filtering theory; Information filtering; Information filters; Kalman filters; Noise measurement; Predictive models; Sensor fusion; Technological innovation; White noise; Kalman filtering theory; Multichannel ARMA signal; Wiener estimator; distributed information fusion; multisensor;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference, 2008. CCDC 2008. Chinese
  • Conference_Location
    Yantai, Shandong
  • Print_ISBN
    978-1-4244-1733-9
  • Electronic_ISBN
    978-1-4244-1734-6
  • Type

    conf

  • DOI
    10.1109/CCDC.2008.4598195
  • Filename
    4598195