DocumentCode :
2577673
Title :
Regularised estimators for fractional Gaussian noise
Author :
Vivero, Oskar ; Heath, William P.
Author_Institution :
Control Syst. Centre, Univ. of Manchester, Manchester, UK
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
5025
Lastpage :
5030
Abstract :
There is significant interest in long-range dependent processes since they occur in a wide range of phenomena across different areas of study. Based on the available models capable of describing long-range dependence, various parameter estimation methods have been developed. This paper revisits the maximum likelihood estimator and its computationally efficient approximations: the Whittle Estimator and the Circulant Embedding estimator. Based on the properties of these, a regularisation method for datasets largely contaminated with errors is introduced.
Keywords :
Gaussian noise; maximum likelihood estimation; parameter estimation; Whittle estimator; circulant embedding estimator; fractional Gaussian noise; long-range dependent process; maximum likelihood estimation; parameter estimation methods; regularised estimators; Approximation methods; Covariance matrix; Density functional theory; Equations; Mathematical model; Maximum likelihood estimation; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717764
Filename :
5717764
Link To Document :
بازگشت