Title :
Bootstrapping autoregressions with infinite order
Author :
Kreiss, Jens-Peter ; Lien, Gordon
Author_Institution :
Inst. fur Math. Stochastik, Tech. Univ. Braunschweig, Germany
Abstract :
We consider a stationary autoregressive process of infinite order and discuss bootstrap procedures for the autocovariance function and the spectral density. After fitting an autoregressive process of increasing order to the observed data and estimating the parameter of the process we obtain estimated residuals. Now we construct an autoregressive bootstrap process with innovations which are distributed according to the empirical distribution of the estimated residuals. Based on the bootstrap sample we define the bootstrap-analogons of the empirical autocovariance function and the lag-window estimator of the spectral density. Some theoretical results concerning consistency of the bootstrap procedure are given. A short simulation study shows the practical relevance of the bootstrap procedure for the spectral density
Keywords :
autoregressive processes; bootstrapping; covariance analysis; parameter estimation; signal sampling; spectral analysis; ARMA; autocovariance function; autoregressive bootstrap process; bootstrap procedures; bootstrap sample; bootstrap-analogons; empirical distribution; estimated residuals; infinite order; lag-window estimator; parameter estimation; simulation; spectral density; stationary autoregressive process; Autoregressive processes; Convergence; Difference equations; Distribution functions; Frequency; Gaussian distribution; H infinity control; Parameter estimation; Proposals; Random variables;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on
Conference_Location :
Adelaide, SA
Print_ISBN :
0-7803-1775-0
DOI :
10.1109/ICASSP.1994.389930