• DocumentCode
    2590403
  • Title

    Training a FIS with EPSO under an Entropy Criterion for Wind Power prediction

  • Author

    Miranda, V. ; Cerqueira, C. ; Monteiro, C.

  • Author_Institution
    INESC Porto
  • fYear
    2006
  • fDate
    11-15 June 2006
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    This paper summarizes efforts in understanding the possible application of information theoretic learning principles to power systems. It presents the application of Renyi´s entropy combined with Parzen windows as a measure of information content of the error distribution in model parameter estimation in supervised learning. It illustrates the concept with an application to the prediction of power generated in a wind park, made by Takagi-Sugeno fuzzy inference systems, whose parameters are discovered with an EPSO-evolutionary particle swarm optimization algorithm
  • Keywords
    entropy; fuzzy neural nets; fuzzy systems; parameter estimation; particle swarm optimisation; wind power; EPSO; FIS; Parzen window; Renyi´s entropy; error distribution; evolutionary particle swarm optimization algorithm; fuzzy inference systems; parameter estimation; supervised learning; wind power prediction; Entropy; Parameter estimation; Power generation; Power system measurements; Power system modeling; Supervised learning; Wind energy; Wind energy generation; Wind forecasting; Wind power generation; Information theoretic learning; fuzzy inference systems; power systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Probabilistic Methods Applied to Power Systems, 2006. PMAPS 2006. International Conference on
  • Conference_Location
    Stockholm
  • Print_ISBN
    978-91-7178-585-5
  • Type

    conf

  • DOI
    10.1109/PMAPS.2006.360208
  • Filename
    4202220