Title :
Analysis of different cost functions in the Geosect airspace partitioning tool
Author :
Wong, Gregory L.
Author_Institution :
NASA Ames Res. Center, Moffett Field, CA, USA
Abstract :
A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect´s sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect´s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.
Keywords :
air traffic control; Geosect airspace partitioning tool; air traffic controller workload; Aerospace control; Air traffic control; Aircraft; Cost function; Delay systems; Density measurement; NASA; Optimal control; Shape control; Traffic control;
Conference_Titel :
Digital Avionics Systems Conference, 2009. DASC '09. IEEE/AIAA 28th
Conference_Location :
Orlando, FL
Print_ISBN :
978-1-4244-4078-8
DOI :
10.1109/DASC.2009.5347541