• DocumentCode
    259343
  • Title

    Recognizability of Intuitionistic Fuzzy Finite Automata-Homomorphic Images

  • Author

    Jordon, A. Jeny ; Lakra, Telesphor ; Priya, K. Jency ; Rajaretnam, T.

  • Author_Institution
    Dept. of Math., St. Joseph´s Coll., Trichirappalli, India
  • fYear
    2014
  • fDate
    Feb. 27 2014-March 1 2014
  • Firstpage
    66
  • Lastpage
    70
  • Abstract
    An intuitionistic fuzzy finite automaton with a unique membership transition on an input symbol is considered. It is shown that, if h : Γ* → Σ* is a morphism and h-1(1) = 1, then the image of a recognizable subset of Γ* is a recognizable subset of Σ* and if h is fine, then the inverse image of recognizable subset of Σ* is recognizable. It is also proved that the shuffle product of any two recognizable sets is recognizable.
  • Keywords
    finite automata; fuzzy logic; fuzzy set theory; image recognition; fine morphism; homomorphic image; intuitionistic fuzzy finite automata recognizability; inverse image recognition; membership transition; shuffle product; subset recognition; Automata; Computational modeling; Formal languages; Fuzzy sets; Image recognition; Integrated circuits; Mathematical model; Intuitionistic fuzzy behavior; Intuitionistic fuzzy finite automaton; Intuitionistic fuzzy sets; fine morphism; shuffle product;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computing and Communication Technologies (WCCCT), 2014 World Congress on
  • Conference_Location
    Trichirappalli
  • Print_ISBN
    978-1-4799-2876-7
  • Type

    conf

  • DOI
    10.1109/WCCCT.2014.56
  • Filename
    6755107