DocumentCode :
2594413
Title :
Evaluation of Partial Discharge Denoising using the Wavelet Packets Transform as a Preprocessing Step for Classification
Author :
Evagorou, Demetres ; Kyprianou, Andreas ; Lewin, Paul L. ; Stavrou, Andreas ; Efthymiou, Venizelos ; Georghiou, George E.
Author_Institution :
Dept. of Electr. & Comput. Eng, Univ. of Cyprus, Nicosia
fYear :
2008
fDate :
26-29 Oct. 2008
Firstpage :
387
Lastpage :
390
Abstract :
The identification of partial discharges in high voltage equipment has emerged as one of the most effective condition monitoring methods for assessing the integrity of the equipment under test. The fact that the application of PD monitoring methods is being applied online makes the measurements suffer from noise, inevitable at the measurement point, and reduces the sensitivity of the measurements. Signal processing methods to post process the measurements have been utilised, resulting not only in rejection of the noise and improvement of the sensitivity, but also in improved classification of the PD. A powerful noise rejection technique, the wavelet packets transform (WPT) has been extensively employed for the effective extraction of PD signals from noise. This technique is particularly useful in denoising signals which have transient characteristics. It expands the signal into different bases that are chosen adaptively according to a cost function, transforming the signal into a set of wavelet coefficients. The choice of a cost function has a significant effect on the compact representation of the signal. In this paper after the theory of wavelet packets is first briefly presented, and the denoising performance of the various wavelet packets parameters, such as the wavelet function, the thresholding type, and the cost function to be used is studied through the use of data acquired in a laboratory experimental environment for four types of discharges; namely the corona discharge in air, the internal discharge in oil, the floating discharge in oil and the surface discharge in air. The Symmlet wavelet has been compared with the Daubechies wavelet, both with 8 vanishing moments, the hard thresholding rule has been compared with the soft thresholding rule, and three cost functions have been compared as to their suitability for best basis expansion. Using some predefined criteria to assess their denoising performance the Symmlet 8 has been found to outperform the Daubech- - ies 8 wavelet, the hard thresholding rule to yield better performance than the soft thresholding rule and the Shannon entropy cost function to perform better that the log energy and the norm energy cost functions.
Keywords :
condition monitoring; corona; partial discharges; signal denoising; wavelet transforms; Daubechies wavelet; PD monitoring methods; Shannon entropy cost function; Symmlet wavelet; air corona discharge; air surface discharge; classification preprocessing step; condition monitoring methods; hard thresholding rule; high voltage equipment; log energy cost function; norm energy cost function; oil floating discharge; oil internal discharge; partial discharge denoising; partial discharge identification; signal processing methods; soft thresholding rule; wavelet function; wavelet packet transform; Condition monitoring; Cost function; Noise measurement; Noise reduction; Partial discharges; Petroleum; Signal processing; Voltage; Wavelet packets; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Insulation and Dielectric Phenomena, 2008. CEIDP 2008. Annual Report Conference on
Conference_Location :
Quebec, QC
Print_ISBN :
978-1-4244-2548-8
Electronic_ISBN :
978-1-4244-2549-5
Type :
conf
DOI :
10.1109/CEIDP.2008.4772794
Filename :
4772794
Link To Document :
بازگشت