DocumentCode :
2595560
Title :
Sensor planning for mobile robot localization - a hierarchical approach using Bayesian network and particle filter
Author :
Zhou, Hongjun ; Sakane, Shigeyuki
Author_Institution :
Chuo Univ., Japan
fYear :
2005
fDate :
2-6 Aug. 2005
Firstpage :
350
Lastpage :
356
Abstract :
In this paper we propose a hierarchical approach to solving sensor planning for the global localization of a mobile robot. Our system consists of two subsystems: a lower and a higher layer. The lower layer uses a particle filter to evaluate the posterior probability of the localization. When the particles converge into clusters, the higher layer starts particle clustering and sensor planning to generate an optimal sensing action sequence for the localization. The higher layer uses a Bayesian network for the probabilistic inference. The sensor planning takes into account both localization belief and sensing cost. We conducted simulations and actual robot experiments to validate our proposed approach.
Keywords :
belief networks; inference mechanisms; mobile robots; probability; Bayesian network; global localization; mobile robot localization; optimal sensing action sequence; particle clustering; particle filter; posterior probability; probabilistic inference; sensor planning; Bayesian methods; Costs; Data mining; Mobile robots; Particle filters; Robot sensing systems; Bayesian Network; Localization; Particle filter; Sensor planning; hierarchical approach;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on
Print_ISBN :
0-7803-8912-3
Type :
conf
DOI :
10.1109/IROS.2005.1545154
Filename :
1545154
Link To Document :
بازگشت