DocumentCode :
2597591
Title :
Automatic Adjustment of Discriminant Adaptive Nearest Neighbor
Author :
Delannay, Nicolas ; Archambeau, Cedric ; Verleysen, Michel
Author_Institution :
Univ. Catholique de Louvain, Louvain-la-Neuve
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
552
Lastpage :
535
Abstract :
K-nearest neighbors relies on the definition of a global metric. In contrast, discriminant adaptive nearest neighbor (DANN) computes a different metric at each query point based on a local linear discriminant analysis. In this paper, we propose a technique to automatically adjust the hyper-parameters in DANN by the optimization of two quality criteria. The first one measures the quality of discrimination, while the second one maximizes the local class homogeneity. We use a Bayesian formulation to prevent over-fitting
Keywords :
Bayes methods; statistical analysis; Bayesian formulation; DANN hyper-parameters; discriminant adaptive nearest neighbor automatic adjustment; discrimination quality; global metric definition; k-nearest neighbors; local class homogeneity; local linear discriminant analysis; over-fitting; Anisotropic magnetoresistance; Bayesian methods; Euclidean distance; Extraterrestrial measurements; Kernel; Linear discriminant analysis; Machine learning; Nearest neighbor searches; Pattern recognition; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.294
Filename :
1699265
Link To Document :
بازگشت