DocumentCode :
2623170
Title :
Match-length functions for data compression
Author :
Gavish, Amnon ; Lempel, A.
Author_Institution :
Technion-Israel Inst. of Technol., Haifa, Israel
fYear :
1994
fDate :
27 Jun-1 Jul 1994
Firstpage :
10
Abstract :
We investigate uniquely decodable match-length functions (in short, MLFs) in conjunction with LZ-type data compression. A MLF of a data string is a function that associates a non-negative integer with each position of the string. The MLF is used to parse the input string into phrases. The codeword for each phrase consists of a pointer to the beginning of a maximal match consistent with the MLF value at that point. We propose several sliding window variants of LZ compression employing different MLF strategies. Following the techniques of Wyner and Ziv, we show that the proposed methods are asymptotically optimal for stationary ergodic sources and that their convergence compares favorably with the LZ1 variant of Wyner and Ziv
Keywords :
convergence of numerical methods; data compression; source coding; LZ-type data compression; asymptotically optimal methods; codeword; convergence; data compression; data string; input string; match-length functions; non-negative integer; phrases; sliding window variants; source coding; stationary ergodic sources; Compression algorithms; Convergence; Data compression; Decoding; Encoding; Entropy; History; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
Type :
conf
DOI :
10.1109/ISIT.1994.394961
Filename :
394961
Link To Document :
بازگشت