DocumentCode :
2631568
Title :
Dynamic object localization via a proximity sensor network
Author :
Petryk, G. ; Buehler, M.
Author_Institution :
Dept. of Mech. Eng., McGill Univ., Montreal, Que., Canada
fYear :
1996
fDate :
8-11 Dec 1996
Firstpage :
337
Lastpage :
341
Abstract :
In this paper we describe a proximity sensor network (PSN) consisting solely of inexpensive intensity-based electro-optical proximity sensors embedded in a robotic end-effector. By coupling the PSN to an extended Kalman filter, and by resolving the sensors´ dependence on ambient light, the object´s reflective properties and the angle between sensor beam and the object´s surface, we succeed in estimating a cylindrical moving object´s unknown planar trajectory. Experiments show robust position and velocity estimation of the moving object, despite noisy sensor data and unmodelled object dynamics. Such a system should be directly applicable to sensor-based control approaches for dynamic grasping and manipulation in robotics and automation
Keywords :
Kalman filters; infrared detectors; light reflection; manipulators; motion estimation; position control; sensor fusion; ambient light; dynamic grasping; dynamic object localization; electrooptical proximity sensors; extended Kalman filter; infrared sensor; object surface; planar motion estimation; proximity sensor network; reflectivity; robotic end-effector; sensor fusion; unmodelled object dynamics; Automatic control; Cameras; Electrooptic devices; Intelligent sensors; Mechanical sensors; Robot sensing systems; Robot vision systems; Robotics and automation; Sensor fusion; Sensor phenomena and characterization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multisensor Fusion and Integration for Intelligent Systems, 1996. IEEE/SICE/RSJ International Conference on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-3700-X
Type :
conf
DOI :
10.1109/MFI.1996.572197
Filename :
572197
Link To Document :
بازگشت