DocumentCode :
2640452
Title :
A Hybrid Neural-PID Control Scheme for Adaptive Visual Tracking
Author :
Huang, Qingjiu ; Li, Nan ; Zhu, Liucun ; Hagiwara, Yichiro
Author_Institution :
Tokyo Inst. of Technol., Tokyo
fYear :
2008
fDate :
18-20 June 2008
Firstpage :
520
Lastpage :
520
Abstract :
This paper addresses a hybrid neural-PID control scheme to nonlinear system for real-time robotic visual tracking of a moving object. By using the motion rules of the CCD camera and the object, the equations of observation and state-space are given. Then, the system can be represented as an MIMO ARMAX model and an efficient estimation model. The adaptive optimal predictor can process on-line estimation of the 3D related parameters between the camera and the object. The control scheme adopts the hybrid neural-PID controller that can adjust the PID controller parameters. The paper concludes with the simulation results and the computer simulation shows that the proposed method is effective to visual tracking of combining vision and control.
Keywords :
CCD image sensors; MIMO systems; neurocontrollers; nonlinear control systems; optimal control; parameter estimation; robot vision; three-term control; 3D related parameter estimation; CCD camera; MIMO ARMAX model; adaptive optimal predictor; adaptive visual tracking; computer simulation; hybrid neural-PID control scheme; motion rules; moving object tracking; nonlinear system; real-time robotic visual tracking; Adaptive control; Cameras; Charge coupled devices; Computer simulation; Control systems; Nonlinear control systems; Nonlinear systems; Programmable control; Real time systems; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Innovative Computing Information and Control, 2008. ICICIC '08. 3rd International Conference on
Conference_Location :
Dalian, Liaoning
Print_ISBN :
978-0-7695-3161-8
Electronic_ISBN :
978-0-7695-3161-8
Type :
conf
DOI :
10.1109/ICICIC.2008.37
Filename :
4603709
Link To Document :
بازگشت