Title :
A new rounding procedure for the assignment problem with applications to dense graph arrangement problems
Author :
Arora, Sanjeev ; Frieze, Alan ; Kaplan, Haim
Author_Institution :
Dept. of Comput. Sci., Princeton Univ., NJ, USA
Abstract :
We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satisfies any linear inequality, then with high probability, the new matching satisfies that linear inequality in an approximate sense. This extends the well-known LP rounding procedure of Raghavan and Thompson (1987), which is usually used to round fractional solutions of linear programs. It also solves an open problem of Luby and Nisan (1993) (“Design an NC procedure for converting near-optimum fractional matchings to near-optimum matchings.”) We use the rounding procedure to design n0(logn/ε(2)) time algorithms for the following: (i) an additive approximation to the 0-1 Quadratic Assignment problem (QAP); (ii) a (1+E)-approximation for “dense” instances of many well-known NP-hard problems, including (an optimization formulation of) GRAPH-ISOMORPHISM, MIN-CUT-LINEAR-ARRANGEMENT, MAX-ACYCLIC-SUBGRAPH, MIN-LINEAR-ARRANGEMENT, and BETWEENNESS. (A “dense” graph is one in which the number of edges is Ω(n2); denseness for the other problems is defined in an analogous way)
Keywords :
algorithm theory; graph theory; randomised algorithms; LP rounding procedure; assignment problem; dense graph arrangement; fractional perfect matchings; linear inequality; randomized procedure; rounding procedure; Approximation algorithms; Constraint optimization; Contracts; Cost function; Integer linear programming; Operations research; Polynomials; Vectors;
Conference_Titel :
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on
Conference_Location :
Burlington, VT
Print_ISBN :
0-8186-7594-2
DOI :
10.1109/SFCS.1996.548460