• DocumentCode
    2647511
  • Title

    Fat struts: Constructions and a bound

  • Author

    Sloane, N. J A ; Vaishampayan, Vinay A. ; Costa, Sueli I R

  • Author_Institution
    AT&T Shannon Labs., Florham Park, NJ, USA
  • fYear
    2009
  • fDate
    11-16 Oct. 2009
  • Firstpage
    333
  • Lastpage
    337
  • Abstract
    Given a lattice ¿ ¿ Rn, a cylinder anchored at two lattice points is called a strut if its interior does not contain a lattice point. We wish to determine the maximum radius of a strut of given length. Optimal struts are constructed in Z3 and Z4. We also derive, using a nonconstructive but elementary argument, an achievable lower bound on the product l¿n-1, where I and ¿ are the length and radius of a strut in Zn. The motivation for the problem comes from studying nonlinear analog communication systems.
  • Keywords
    set theory; fat struts; lattice points; n-dimensional cylinder; nonlinear analog communication systems; Communication systems; Conferences; Decoding; Gaussian channels; Image reconstruction; Information theory; Lattices; Random variables; USA Councils; Zinc;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Workshop, 2009. ITW 2009. IEEE
  • Conference_Location
    Taormina
  • Print_ISBN
    978-1-4244-4982-8
  • Electronic_ISBN
    978-1-4244-4983-5
  • Type

    conf

  • DOI
    10.1109/ITW.2009.5351175
  • Filename
    5351175