DocumentCode :
2648857
Title :
The construction of a class of trivariate nonseparable compactly supported wavelets
Author :
Huang, Yong-Dong ; Cheng, Zheng-Xing
Author_Institution :
North Univ. for Nationalities, Yinchuan
Volume :
4
fYear :
2007
fDate :
2-4 Nov. 2007
Firstpage :
1876
Lastpage :
1881
Abstract :
In this paper, under a mild condition,the construction of compactly supported ((1 0 1)/ (-1 -1 1)/ (0 -1 0)) -wavelets is obtained. Wavelets inherits the symmetry of the corresponding scaling function and satisfies the vanishing moment condition originating in the symbols of the scaling function.One example is also given to demonstrate the general theory.
Keywords :
multidimensional signal processing; wavelet transforms; multidimensional signals; scaling function; trivariate nonseparable compactly supported wavelets; vanishing moment; Algorithm design and analysis; Image edge detection; Information analysis; Multiresolution analysis; Notice of Violation; Pattern analysis; Pattern recognition; Signal analysis; Signal processing; Wavelet analysis; Riesz basis; scaling function; symmetric; vanishing moment; wavelet;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-1065-1
Electronic_ISBN :
978-1-4244-1066-8
Type :
conf
DOI :
10.1109/ICWAPR.2007.4421761
Filename :
4421761
Link To Document :
بازگشت