DocumentCode :
2651908
Title :
A multiple model least-squares estimation method
Author :
Niu, Shaohua ; Fisher, D. Grant
Author_Institution :
Dept. of Chem. Eng., Alberta Univ., Edmonton, Alta., Canada
Volume :
2
fYear :
1994
fDate :
29 June-1 July 1994
Firstpage :
2231
Abstract :
The traditional least-squares parameter estimation method involves matrix inversion and is therefore subject to numerical problems. In this paper, a multiple model least-squares (MMLS) method is proposed which is a fundamental reformulation and efficient implementation of the least-squares method. The MMLS method simultaneously produces multiple models of various orders plus the corresponding loss functions which can be used for order-determination. The order-recursive nature of the MMLS method avoids the numerical problems associated with overparameterization.
Keywords :
least squares approximations; parameter estimation; loss functions; matrix inversion; multiple model least-squares estimation method; numerical problems; order-determination; overparameterization; parameter estimation; Chemical engineering; Covariance matrix; Data mining; Difference equations; Least squares approximation; Least squares methods; Parameter estimation; System identification; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1994
Print_ISBN :
0-7803-1783-1
Type :
conf
DOI :
10.1109/ACC.1994.752473
Filename :
752473
Link To Document :
بازگشت