DocumentCode :
2691050
Title :
Hybridisation of evolutionary programming and machine learning with k-nearest neighbor estimation
Author :
He, Jingsong ; Yang, Zhenyu ; Yao, Xin
Author_Institution :
Univ. of Sci. & Technol. of China (USTC), Hefei
fYear :
2007
fDate :
25-28 Sept. 2007
Firstpage :
1693
Lastpage :
1700
Abstract :
Evolutionary programming (EP) focus on the search step size which decides the ability of escaping local minima, however does not touch the issue of search in promising region. Estimation of distribution algorithms (EDAs) focus on where the promising region is, however have less consideration about behavior of each individual in solution search algorithms. Since the basic ideas of EP and EDAs are quite different, it is possible to make them reinforce each other. In this paper, we present a hybrid evolutionary framework to make use of both the ideas of EP and EDAs through introducing a mini estimation operator into EP´s search cycle. Unlike previous EDAs that use probability density function (PDF), the estimation mechanism used in the proposed framework is the k-nearest neighbor estimation which can perform better with relative small amount of training samples. Our experimental results have shown that the incorporation of machine learning techniques, such as k-nearest neighbor estimation, can improve the performance of evolutionary optimisation algorithms for a large number of benchmark functions.
Keywords :
distributed algorithms; estimation theory; evolutionary computation; learning (artificial intelligence); estimation of distribution algorithm; evolutionary optimisation algorithm; evolutionary programming; hybrid evolutionary framework; k-nearest neighbor estimation; machine learning; mini estimation operator; Accuracy; Electronic design automation and methodology; Evolutionary computation; Gaussian distribution; Genetic mutations; Genetic programming; Helium; Machine learning; Machine learning algorithms; Optimization methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1339-3
Electronic_ISBN :
978-1-4244-1340-9
Type :
conf
DOI :
10.1109/CEC.2007.4424677
Filename :
4424677
Link To Document :
بازگشت