DocumentCode :
2704444
Title :
Model-based pose estimation using genetic algorithm
Author :
Toyama, Fubito ; Shoji, Kenji ; Miyamichi, Juichi
Author_Institution :
Dept. of Inf. Sci., Utsunomiya Univ., Japan
Volume :
1
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
198
Abstract :
In this paper, we propose a method of the model-based pose estimation in the 3D world from a 2D image. This process consists in searching for the best value of coordinates (x, y, z) and of rotating angles (θx, θy, θz) in which the model object matches most exactly the given input edge image. Taking the match of objects as an index on the six-parameter space, this process can be regarded as a maximum searching problem. We use a genetic algorithm in the estimation of those parameters, and propose a new concept of fitness which takes edge direction into consideration. Our experiments show the results of the proposed method on edge input images
Keywords :
genetic algorithms; image processing; spatial variables measurement; 2D image; edge direction; genetic algorithm; maximum searching problem; model-based pose estimation; six-parameter space; Cameras; Filters; Genetic algorithms; Gray-scale; Image edge detection; Information science; Layout; Parameter estimation; Smoothing methods; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.711115
Filename :
711115
Link To Document :
بازگشت