DocumentCode :
2707083
Title :
Mean field decomposition of a posteriori probability for MRF-based unsupervised textured image segmentation
Author :
Noda, Hideki ; Shirazi, Mehdi N. ; Zhang, Bing ; Kawaguchi, Eiji
Author_Institution :
Kyushu Inst. of Technol., Kitakyushu, Japan
Volume :
6
fYear :
1999
fDate :
15-19 Mar 1999
Firstpage :
3477
Abstract :
This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of multispectral images consisting of multiple textures. To model such textured images, a hierarchical MRF is used with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method uses the expectation-maximization (EM) method for model parameter estimation, where in order to overcome the well-noticed computational problem in the expectation step, we approximate the Baum function using mean-field-based decomposition of a posteriori probability. Given provisionally estimated parameters at each iteration in the EM method, a provisional segmentation is carried out using local a posteriori probability of each pixel´s region label, which is derived by mean-field-based decomposition of a posteriori probability of the whole region image
Keywords :
Markov processes; function approximation; image segmentation; image texture; iterative methods; parameter estimation; probability; Baum function approximation; MRF model-based method; Markov random field; a posteriori probability; expectation-maximization method; hierarchical MRF; iteration; mean field decomposition; multiple textures; multispectral images; parameter estimation; unobservable region image; unsupervised textured image segmentation; Geometry; Image segmentation; Laboratories; Lattices; Markov random fields; Maximum likelihood estimation; Multispectral imaging; Parameter estimation; Pixel; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
Conference_Location :
Phoenix, AZ
ISSN :
1520-6149
Print_ISBN :
0-7803-5041-3
Type :
conf
DOI :
10.1109/ICASSP.1999.757591
Filename :
757591
Link To Document :
بازگشت