DocumentCode :
2715971
Title :
A framework for the design of a military operational supply network
Author :
Ghanmi, Ahmed ; Martel, Alain ; Berger, Jean ; Boukhtouta, Abdeslem
Author_Institution :
Centre for Operational Res. & Anal., Canadian Dept. of Nat. Defence, Ottawa, ON, Canada
fYear :
2009
fDate :
8-10 July 2009
Firstpage :
1
Lastpage :
9
Abstract :
This paper presents a methodology framework for the design of robust and effective military supply networks integrating various supply chain management dimensions. The proposed network design approach accounts for dynamic market demand, capacity, supply and resource conditions in a time-varying uncertain environment. The framework is based upon a two-level decomposition scheme combining design and user model components. The proposed stochastic multi-stage design model problem consists of determining the number and location of facilities (depots) required to satisfy an anticipated set of customer´s demands and customer allocation (mission) to depots over a given time horizon. The user model is exploited to produce scenario-based anticipations to the design model required for network design problem-solving, and to assess network design solutions. The user model component mixes lot-sizing decisions with transportation assets assignments. Simulation is expected to be used to dynamically generate stochastic events supporting the construction of solution at both levels. Preliminary results on a military operational support hubs case study are reported and briefly analyzed for a simplified asset pre-positioning problem.
Keywords :
facility location; lot sizing; military computing; stochastic systems; supply and demand; supply chain management; customer allocation; customer demands; depots; dynamic market demand; lot-sizing decisions; military operational supply network; military operational support hubs; military supply networks; network design; stochastic events; stochastic multistage design model problem; supply chain management; time-varying uncertain environment; transportation assets assignments; Computational intelligence; Inventory management; Redundancy; Resilience; Risk management; Robustness; Stochastic processes; Supply chains; Transportation; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on
Conference_Location :
Ottawa, ON
Print_ISBN :
978-1-4244-3763-4
Electronic_ISBN :
978-1-4244-3764-1
Type :
conf
DOI :
10.1109/CISDA.2009.5356523
Filename :
5356523
Link To Document :
بازگشت