DocumentCode :
2716070
Title :
Linear matrix inequalities with chordal sparsity patterns and applications to robust quadratic optimization
Author :
Andersen, Martin S. ; Vandenberghe, Lieven ; Dahl, Joachim
Author_Institution :
Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA
fYear :
2010
fDate :
8-10 Sept. 2010
Firstpage :
7
Lastpage :
12
Abstract :
We discuss nonsymmetric interior-point methods for linear cone programs with chordal sparse matrix cone constraints. The algorithms take advantage of fast recursive algorithms for evaluating the function values and derivatives for the logarithmic barrier functions of the cone of positive semidefinite matrices with a given chordal sparsity pattern, and of the corresponding dual cone. We provide numerical results that show that our implementation can be significantly faster than general purpose semidefinite programming solvers. As a specific application, we discuss robust quadratic optimization.
Keywords :
linear matrix inequalities; quadratic programming; chordal sparse matrix cone constraints; chordal sparsity patterns; fast recursive algorithms; linear cone programs; linear matrix inequalities; logarithmic barrier functions; nonsymmetric interior-point methods; positive semidefinite matrices; robust quadratic optimization; semidefinite programming; Equations; Mathematical model; Optimization; Robustness; Sparse matrices; Symmetric matrices; Tin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Control System Design (CACSD), 2010 IEEE International Symposium on
Conference_Location :
Yokohama
Print_ISBN :
978-1-4244-5354-2
Electronic_ISBN :
978-1-4244-5355-9
Type :
conf
DOI :
10.1109/CACSD.2010.5612788
Filename :
5612788
Link To Document :
بازگشت