Title :
Knowledge management for computational intelligence systems
Author :
Weber, Rosina ; Wu, Duanqing
Author_Institution :
Coll. of Inf. Sci. & Technol., Drexel Univ., Philadelphia, PA, USA
Abstract :
Computer systems do not learn from previous experiences unless they are designed for this purpose. Computational intelligence systems (CIS) are inherently capable of dealing with imprecise contexts, creating a new solution in each new execution. Therefore, every execution of a CIS is valuable to be learned. We describe an architecture for designing CIS that includes a knowledge management (KM) framework, allowing the system to learn from its own experiences, and those learned in external contexts. This framework makes the system flexible and adaptable so it evolves, guaranteeing high levels of reliability when performing in a dynamic world. This KM framework is being incorporated into the computational intelligence tool for software testing at National Institute for Systems Test and Productivity. This paper introduces the framework describing the two underlying methodologies it uses, i.e. case-based reasoning and monitored distribution; it also details the motivation and requirements for incorporating the framework into CIS.
Keywords :
case-based reasoning; knowledge management; learning (artificial intelligence); program testing; software tools; CIS; KM; case-based reasoning; computational intelligence systems; knowledge management; software testing; Aerodynamics; Artificial neural networks; Computational Intelligence Society; Computational intelligence; Educational institutions; Humans; Information science; Knowledge management; Software testing; Systems engineering and theory;
Conference_Titel :
High Assurance Systems Engineering, 2004. Proceedings. Eighth IEEE International Symposium on
Print_ISBN :
0-7695-2094-4
DOI :
10.1109/HASE.2004.1281736