• DocumentCode
    27637
  • Title

    Modeling 20-nm Germanium FinFET With the Industry Standard FinFET Model

  • Author

    Khandelwal, Sourabh ; Duarte, Juan Pablo ; Chauhan, Yogesh Singh ; Chenming Hu

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
  • Volume
    35
  • Issue
    7
  • fYear
    2014
  • fDate
    Jul-14
  • Firstpage
    711
  • Lastpage
    713
  • Abstract
    In this letter, we present modeling results for germanium p-type FinFETs using the industry standard Berkeley Spice Common Multi-gate Field Effect Transistor (BSIM-CMG) model. The effect of perpendicular electrical field on hole mobility in germanium FinFETs is found to be different from silicon FinFETs. We present an updated Ge mobility equation to account for this difference. With this single update, BSIM-CMG agrees very well with the measured I-V data of Ge FinFETs with a gate-length from 130 to 20 nm. We conclude that a production quality standard model is available for simulation of circuits employing p-type Ge FinFET.
  • Keywords
    MOSFET; elemental semiconductors; germanium; hole mobility; semiconductor device models; BSIM-CMG model; Ge; circuit simulation; germanium FinFET modeling; germanium p-type FinFET; hole mobility; industry standard Berkeley Spice common multigate field effect transistor model; industry standard FinFET model; measured I-V data; perpendicular electrical field; production quality standard model; silicon FinFET; size 130 nm to 20 nm; updated germanium mobility equation; FinFETs; Germanium; Integrated circuit modeling; Logic gates; Mathematical model; Semiconductor device modeling; Silicon; BSIM-CMG; FinFETs; Germanium; compact models; compact models.;
  • fLanguage
    English
  • Journal_Title
    Electron Device Letters, IEEE
  • Publisher
    ieee
  • ISSN
    0741-3106
  • Type

    jour

  • DOI
    10.1109/LED.2014.2323956
  • Filename
    6823649