Title :
Investigating the use of speech features and their corresponding distribution characteristics for robust speech recognition
Author :
Lin, Shih-Hsiang ; Yeh, Yao-Ming ; Chen, Berlin
Author_Institution :
Nat. Taiwan Normal Univ., Taipei
Abstract :
The performance of current automatic speech recognition (ASR) systems often deteriorates radically when the input speech is corrupted by various kinds of noise sources. Quite a few of techniques have been proposed to improve ASR robustness over the last few decades. Related work reported in the literature can be generally divided into two aspects according to whether the orientation of the methods is either from the feature domain or from the corresponding probability distributions. In this paper, we present a polynomial regression approach which has the merit of directly characterizing the relationship between the speech features and their corresponding probability distributions to compensate the noise effects. Two variants of the proposed approach are also extensively investigated as well. All experiments are conducted on the Aurora-2 database and task. Experimental results show that for clean-condition training, our approaches achieve considerable word error rate reductions over the baseline system, and also significantly outperform other conventional methods.
Keywords :
polynomials; regression analysis; speech recognition; ASR robustness; current automatic speech recognition systems; distribution characteristics; feature domain; noise effects compensation; noise sources; polynomial regression approach; probability distributions; robust speech recognition; speech features; Acoustic distortion; Automatic speech recognition; Histograms; Noise robustness; Nonlinear distortion; Polynomials; Probability distribution; Speech enhancement; Speech recognition; Uncertainty; clustering; histogram equalization; polynomial regression; robustness; speech recognition;
Conference_Titel :
Automatic Speech Recognition & Understanding, 2007. ASRU. IEEE Workshop on
Conference_Location :
Kyoto
Print_ISBN :
978-1-4244-1746-9
Electronic_ISBN :
978-1-4244-1746-9
DOI :
10.1109/ASRU.2007.4430089