Title :
Boosted Modified Probabilistic Neural Network (BMPNN) for Network Intrusion Detection
Author :
Tran, Tich Phuoc ; Jan, Tony
Author_Institution :
Univ. of Technol., Sydney
Abstract :
Most of the currently available network security techniques are not able to cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. An automated and adaptive defensive tool is imperative for computer networks. One of the emerging solutions for Network Security is the Intrusion Detection System (IDS). However, this technology still faces some challenges such as low detection rates, high false alarm rates and requirement of heavy computational power. To overcome these difficulties, this paper proposes an innovative Machine Learning algorithm called Boosted Modified Probabilistic Neural Network (BMPNN) which utilizes semi-parametric learning model and Adaptive boosting techniques to reduce learning bias and generalization variance in difficult classification. In this paper, BMPNN is implemented as a classifier to detect different types of network anomalies in the KDD-99 benchmark. Extensive experimental outcome indicates that the proposed BMPNN outperforms other state-of-the-art learning algorithms in terms of detection accuracy and model robustness at an affordable computational cost.
Keywords :
computer networks; learning (artificial intelligence); neural nets; telecommunication security; adaptive boosting techniques; boosted modified probabilistic neural network; computer networks; distributed computer systems; machine learning algorithm; network intrusion detection; network security techniques; semiparametric learning model; Computer networks; Computer security; Distributed computing; Face detection; Intrusion detection; Machine learning; Machine learning algorithms; Neural networks; Power system modeling; Power system security; Artificial Neural Network; Generalization Variance; Learning Bias; Network Intrusion Detection;
Conference_Titel :
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9490-9
DOI :
10.1109/IJCNN.2006.247058