Title :
Odd Leaf Out: Improving Visual Recognition with Games
Author :
Hansen, Derek L. ; Jacobs, David W. ; Lewis, Darcy ; Biswas, Arijit ; Preece, Jennifer ; Rotman, Dana ; Stevens, Eric
Author_Institution :
Human-Comput. Interaction Lab., Univ. of Maryland, College Park, MD, USA
Abstract :
A growing number of projects are solving complex computational and scientific tasks by soliciting human feedback through games. Many games with a purpose focus on generating textual tags for images. In contrast, we introduce a new game, Odd Leaf Out, which provides players with an enjoyable and educational game that serves the purpose of identifying misclassification errors in a large database of labeled leaf images. The game uses a novel mechanism to solicit useful information from players´ incorrect answers. A study of 165 players showed that game data can be used to identify mislabeled leaves much more quickly than would have been possible using a computer vision algorithm alone. Domain novices and experts were equally good at identifying mislabeled images, although domain experts enjoyed the game more. We discuss the successes and challenges of this new game, which can be applied to other domains with labeled image datasets.
Keywords :
biology computing; botany; computer games; image classification; object recognition; Odd Leaf Out; complex computational tasks; computer games; computer vision algorithm; educational game; human feedback; labeled image datasets; misclassification errors; scientific tasks; textual tags; visual recognition; Accuracy; Classification algorithms; Computer vision; Games; Humans; Labeling; Vegetation; computer vision; error detection; games with a purpose; leaf identification;
Conference_Titel :
Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4577-1931-8
DOI :
10.1109/PASSAT/SocialCom.2011.225