DocumentCode :
2776523
Title :
Kernel enhanced multilayer perceptron for industrial process diagnosis
Author :
Mello, Lucas H Sousa ; Varej, Flàvio M. ; Rauber, Thomas W.
Author_Institution :
Dept. of Comput. Sci., Univ. of Espirito Santo, Vitoria, Brazil
fYear :
2012
fDate :
10-15 June 2012
Firstpage :
1
Lastpage :
8
Abstract :
We perform an empirical performance analysis of the Multilayer Perceptron applied to the fault diagnosis of motor pumps installed on oil rigs. The conventional Multilayer Perceptron architecture is compared to a recently developed enhancement of this general purpose regression/classification paradigm, using an intermediate opaque layer which maps the original patterns to a reproducing kernel Hilbert space prior to learning the usual functional mapping of the network. State of the art statistical tools are used to corroborate our hypotheses that the kernel enhanced version improves the classification performance.
Keywords :
Hilbert spaces; fault diagnosis; multilayer perceptrons; pattern classification; petroleum industry; production engineering computing; pumps; regression analysis; classification paradigm; empirical performance analysis; fault diagnosis; functional mapping; industrial process diagnosis; intermediate opaque layer; kernel Hilbert space; kernel enhanced multilayer perceptron; motor pump; multilayer perceptron architecture; oil rig; regression paradigm; statistical tool; Feature extraction; Hilbert space; Kernel; Multilayer perceptrons; Pumps; Support vector machines; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2012 International Joint Conference on
Conference_Location :
Brisbane, QLD
ISSN :
2161-4393
Print_ISBN :
978-1-4673-1488-6
Electronic_ISBN :
2161-4393
Type :
conf
DOI :
10.1109/IJCNN.2012.6252733
Filename :
6252733
Link To Document :
بازگشت