DocumentCode :
2791071
Title :
Genetic Algorithms for MLP Neural Network parameters optimization
Author :
Er, Meng Joo ; Liu, Fan
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2009
fDate :
17-19 June 2009
Firstpage :
3653
Lastpage :
3658
Abstract :
In this paper, a hybrid learning algorithm for a multilayer perceptrons (MLP) neural network using genetic algorithms (GA) is proposed. This hybrid learning algorithm has two steps: First, all the parameters (weights and biases) of the initial neural network are encoded to form a long chromosome and tuned by the GA. Second, as a result of the GA process, a quasi-Newton method called Broyden-Fletcher-Goldfarb-Shannon (BFGS) method is applied to train the neural network. Simulation studies on function approximation and nonlinear dynamic system identification are presented to illustrate the performance of the proposed learning algorithm.
Keywords :
Newton method; backpropagation; encoding; genetic algorithms; multilayer perceptrons; BFGS method; Broyden-Fletcher-Goldfarb-Shannon method; GA process; MLP neural network; backpropagation; genetic algorithm; hybrid learning algorithm; parameters optimization; quasiNewton method; Backpropagation algorithms; Biological cells; Biological neural networks; Function approximation; Genetic algorithms; Multi-layer neural network; Neural networks; Nonlinear dynamical systems; Signal processing algorithms; System identification; Backpropagation; Function Approximation; Genetic Algorithms; Nonlinear Dynamic System Identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference, 2009. CCDC '09. Chinese
Conference_Location :
Guilin
Print_ISBN :
978-1-4244-2722-2
Electronic_ISBN :
978-1-4244-2723-9
Type :
conf
DOI :
10.1109/CCDC.2009.5192353
Filename :
5192353
Link To Document :
بازگشت