DocumentCode :
2803611
Title :
A New Algorithm for On-Line Multivariate ARMA Identification Using Multimodel Partitioning Theory
Author :
Pappas, Stylianos Sp ; Harkiolakis, Nicholas ; Karampelas, Panagiotis ; Ekonomou, Lambros ; Katsikas, Sokratis K.
Author_Institution :
Dept. of Inf. & Commun. Syst. Eng., Univ. of the Aegean, Samos
fYear :
2008
fDate :
28-30 Aug. 2008
Firstpage :
222
Lastpage :
226
Abstract :
In this study an adaptive algorithm for multivariate (MV) ARMA model order identification and parameter estimation is presented based on the multi-model partitioning theory (MMPT). The method proposed is based on the reformulation of the problem in the standard state space form and on implementing a bank of Kalman filters, each fitting a different order model. The first step will be to select the order of the MV ARMA model using the MPPT, for general (not necessarily Gaussian) data pdf´s. The assumption made is that the true model order is theta (lambda, lambda) where lambda = max (p, q), p is the order of the AR component and q the order of the MA component. The second step will be to estimate the AR and MA coefficients and the actual values of p and q.
Keywords :
Kalman filters; autoregressive moving average processes; parameter estimation; Kalman filters; multimodel partitioning theory; online multivariate ARMA identification; order identification; parameter estimation; Autocorrelation; Communication systems; Covariance matrix; Educational technology; Informatics; Partitioning algorithms; Predictive models; State-space methods; Systems engineering and theory; Systems engineering education; Adaptive; Kalman Filter; MV ARMA; Multimodel Partitioning; Order Estimation; Parameter Identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Informatics, 2008. PCI '08. Panhellenic Conference on
Conference_Location :
Samos
Print_ISBN :
978-0-7695-3323-0
Type :
conf
DOI :
10.1109/PCI.2008.24
Filename :
4621566
Link To Document :
بازگشت