• DocumentCode
    2804597
  • Title

    Linear image registration through MRF optimization

  • Author

    Glocker, Ben ; Zikic, Darko ; Komodakis, Nikos ; Paragios, Nikos ; Navab, Nassir

  • fYear
    2009
  • fDate
    June 28 2009-July 1 2009
  • Firstpage
    422
  • Lastpage
    425
  • Abstract
    We propose a Markov Random Field formulation for the linear image registration problem. Transformation parameters are represented by nodes in a fully connected graph where the edges model pairwise dependencies. Parameter estimation is then solved through iterative discrete labeling and discrete optimization while a label space refinement strategy is employed to achieve sub-millimeter accuracy. Our framework can encode any similarity measure, allows for automatic reduction of the degrees of freedom by simple changes on the MRF topology, and is robust to initialization. Promising results on real data and random studies demonstrate the potential of our approach.
  • Keywords
    Markov processes; biomedical MRI; brain; computerised tomography; image registration; medical image processing; optimisation; parameter estimation; random processes; CT imaging; MR imaging; Markov random field; brain; discrete optimization; fully connected graph; iterative discrete labeling; label space refinement; linear image registration; parameter estimation; transformation parameters; Anisotropic magnetoresistance; Biomedical imaging; Computer science; Image registration; Markov random fields; Matrix decomposition; Mutual information; Optimization methods; Robustness; Shearing; Discrete Optimization; Linear Image Registration; Markov Random Fields;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on
  • Conference_Location
    Boston, MA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4244-3931-7
  • Electronic_ISBN
    1945-7928
  • Type

    conf

  • DOI
    10.1109/ISBI.2009.5193074
  • Filename
    5193074