DocumentCode :
2805588
Title :
Anatomical priors for global probabilistic diffusion tractography
Author :
Yendiki, XAnastasia ; Stevens, Allison ; Augustinack, Jean ; Salat, David ; Zollei, Lilla ; Fischl, Bruce
Author_Institution :
HMS/MGH/MIT Athinoula A. Martinos Center for Biomed. Imaging, Charlestown, MA, USA
fYear :
2009
fDate :
June 28 2009-July 1 2009
Firstpage :
630
Lastpage :
633
Abstract :
We investigate the use of anatomical priors in a Bayesian framework for diffusion tractography. We compare priors that utilize different types of information on the white-matter pathways to be reconstructed. This information includes manually labeled paths from a set of training subjects and anatomical segmentation labels obtained from T1-weighted MR images of the same subjects. Our results indicate that the use of prior information increases robustness to end-point ROI size and yields solutions that agree with expert-drawn manual labels, obviating the need for manual intervention on any new test subjects.
Keywords :
belief networks; biomedical MRI; image reconstruction; image segmentation; medical image processing; Bayesian framework; T1-weighted MR images; anatomical priors; anatomical segmentation labels; end-point ROI size; expert-drawn manual labels; global probabilistic diffusion tractography; image reconstruction; white-matter pathways; Bayesian methods; Biomedical imaging; Image reconstruction; Image segmentation; Magnetic resonance; Magnetic resonance imaging; Optical fiber testing; Robustness; Shape; Uncertainty; diffusion tractography; magnetic resonance imaging; statistical reconstruction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on
Conference_Location :
Boston, MA
ISSN :
1945-7928
Print_ISBN :
978-1-4244-3931-7
Electronic_ISBN :
1945-7928
Type :
conf
DOI :
10.1109/ISBI.2009.5193126
Filename :
5193126
Link To Document :
بازگشت