• DocumentCode
    2806793
  • Title

    Image-driven population analysis through mixture modeling

  • Author

    Sabuncu, Mert R. ; Golland, Polina

  • Author_Institution
    Comput. Sci. & Artificial Intell. Lab., MIT, Cambridge, MA, USA
  • fYear
    2009
  • fDate
    June 28 2009-July 1 2009
  • Firstpage
    825
  • Lastpage
    825
  • Abstract
    We present a novel, image-driven population analysis framework, called iCluster. iCluster processes a large set of images to determine a partitioning of the population based on image similarities, while establishing a dense spatial correspondence across individuals and computing the templates that represent each subpopulation. In experiments, we show that an image-driven partitioning of a large population reveals age effects on neuroanatomy and correlates with mental health.
  • Keywords
    biomedical MRI; brain; neurophysiology; pattern clustering; OASIS dataset; anatomically homogeneous subpopulation identification; brain MRI scans; dense spatial correspondence; iCluster process; image clustering; image-driven partitioning; image-driven population analysis; mental health; mixture modeling approach; neuroanatomy; template computing; Artificial intelligence; Availability; Clustering algorithms; Computer science; Dementia; Demography; Image analysis; Image segmentation; Neuroimaging; Spatial resolution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on
  • Conference_Location
    Boston, MA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4244-3931-7
  • Electronic_ISBN
    1945-7928
  • Type

    conf

  • DOI
    10.1109/ISBI.2009.5193178
  • Filename
    5193178