DocumentCode :
2815257
Title :
Flocking of multi-agents with a virtual leader part II: with a virtual leader of varying velocity
Author :
Su, Housheng ; Wang, Xiaofan ; Lin, Zongli
Author_Institution :
Shanghai Jiao Tong Univ., Shanghai
fYear :
2007
fDate :
12-14 Dec. 2007
Firstpage :
1429
Lastpage :
1434
Abstract :
All agents being informed and the virtual leader traveling at a constant velocity are the two critical assumptions seen in the recent literature on flocking in multi-agent systems. Under these assumptions, Olfati-Saber in a recent IEEE Transactions on Automatic Control paper proposed a flocking algorithm which by incorporating a navigational feedback enables a group of agents to track a virtual leader. This paper revisits the problem of multi-agent flocking in the absence of the above two assumptions. In an earlier part, Part I, of this paper, we showed that, even when only a fraction of agents are informed, the Olfati-Saber flocking algorithm still enables all the informed agents to move with the desired constant velocity, and an uninformed agent to also move with the same desired velocity if it can be directly or indirectly influenced by the informed agents during the evolution. This part, Part II, of the paper considers the situation where the virtual leader travels with a varying velocity. In particular, we propose modification to the Olfati-Saber algorithm and show that the resulting algorithm enables the asymptotic tracking of the virtual leader. That is, the position and velocity of the center of mass of all agents will converge exponentially to those of the virtual leader. The convergent rate is also given.
Keywords :
distributed control; feedback; multi-agent systems; navigation; nonlinear systems; Olfati-Saber algorithm; agent movement; agent position; agent velocity; asymptotic tracking; exponential convergence; multiagent flocking; multiagent systems; navigational feedback; velocity variation; virtual leader; Algorithm design and analysis; Control systems; Educational institutions; Evolution (biology); Feedback; Marine animals; Multiagent systems; Navigation; USA Councils; Velocity control; Distributed control; flocking; informed agents; nonlinear systems; virtual leader;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2007.4434067
Filename :
4434067
Link To Document :
بازگشت