DocumentCode
2816637
Title
Parameter estimation in Bayesian super-resolution pansharpening using contourlets
Author
Amro, Israa ; Mateos, Javier ; Vega, Miguel
Author_Institution
Depto. de Cienc. de la Comput., Univ. de Granada, Granada, Spain
fYear
2011
fDate
11-14 Sept. 2011
Firstpage
1345
Lastpage
1348
Abstract
In this paper, we consider the problem of parameter estimation on the super resolution and Bayesian methodology for pansharpening using contourlet transform. The used methodology is able to incorporate prior knowledge on the expected characteristics of the multispectral images, include information on the unknown parameters in the form of hyperprior distributions and estimate the unknown parameters together with the high resolution multispectral image. The experimental results show that the proposed method not only enhances the spatial resolution of the pansharpened image, but also preserves the spectral information of the original multispectral image.
Keywords
Bayes methods; geophysical image processing; image resolution; parameter estimation; remote sensing; transforms; Bayesian superresolution pansharpening; contourlet transform; high resolution multispectral image; hyperprior distributions; parameter estimation; Approximation methods; Bayesian methods; Noise; Spatial resolution; Strontium; Vectors; contourlets; multispectral image; pansharpening; parameter estimation; remote sensing; super-resolution;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location
Brussels
ISSN
1522-4880
Print_ISBN
978-1-4577-1304-0
Electronic_ISBN
1522-4880
Type
conf
DOI
10.1109/ICIP.2011.6115686
Filename
6115686
Link To Document