• DocumentCode
    2816637
  • Title

    Parameter estimation in Bayesian super-resolution pansharpening using contourlets

  • Author

    Amro, Israa ; Mateos, Javier ; Vega, Miguel

  • Author_Institution
    Depto. de Cienc. de la Comput., Univ. de Granada, Granada, Spain
  • fYear
    2011
  • fDate
    11-14 Sept. 2011
  • Firstpage
    1345
  • Lastpage
    1348
  • Abstract
    In this paper, we consider the problem of parameter estimation on the super resolution and Bayesian methodology for pansharpening using contourlet transform. The used methodology is able to incorporate prior knowledge on the expected characteristics of the multispectral images, include information on the unknown parameters in the form of hyperprior distributions and estimate the unknown parameters together with the high resolution multispectral image. The experimental results show that the proposed method not only enhances the spatial resolution of the pansharpened image, but also preserves the spectral information of the original multispectral image.
  • Keywords
    Bayes methods; geophysical image processing; image resolution; parameter estimation; remote sensing; transforms; Bayesian superresolution pansharpening; contourlet transform; high resolution multispectral image; hyperprior distributions; parameter estimation; Approximation methods; Bayesian methods; Noise; Spatial resolution; Strontium; Vectors; contourlets; multispectral image; pansharpening; parameter estimation; remote sensing; super-resolution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2011 18th IEEE International Conference on
  • Conference_Location
    Brussels
  • ISSN
    1522-4880
  • Print_ISBN
    978-1-4577-1304-0
  • Electronic_ISBN
    1522-4880
  • Type

    conf

  • DOI
    10.1109/ICIP.2011.6115686
  • Filename
    6115686