DocumentCode :
2817097
Title :
RANSAC-LEL: An optimized version with least entropy like estimators
Author :
Distante, Cosimo ; Indiveri, Giovanni
Author_Institution :
Ist. Naz. di Ottica, CNR, Arnesano, Italy
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1425
Lastpage :
1428
Abstract :
The paper proposes a robust estimation method which implements, in cascade, two algorithms: (i) a Random Sample and Consensus (RANSAC) algorithm and (ii) a novel nonlinear prediction error estimator minimizing a cost function inspired by the mathematical definition of Gibbs entropy. The minimization of the nonlinear cost function allows to refine the Consensus Set found with standard RANSAC in order to reach optimal estimates of geometric transformation parameters under image stitching context. The method has been experimentally tested and compared with a standard RANSAC-MSAC algorithm where noticeable improvements are recorded in terms of computational complexity and quality of the stitching process, namely of the mean squared symmetric re-projection error.
Keywords :
computational complexity; entropy; image matching; prediction theory; random processes; Gibbs entropy; RANSAC-LEL; RANSAC-MSAC algorithm; computational complexity; geometric transformation parameter; image matching; image stitching; least entropy like estimator; mean squared symmetric reprojection error; nonlinear cost function; nonlinear prediction error estimator; random sample and consensus; robust estimation method; stitching process; Computational modeling; Conferences; Cost function; Entropy; Estimation; Kernel; Robustness; Homography Estimation; Image matching; RANSAC-LEL;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115709
Filename :
6115709
Link To Document :
بازگشت