DocumentCode :
2825406
Title :
Indirect Symbolic Correlation Approach to Unsegmented Text Recognition
Author :
Nagy, G. ; Seth, S.C. ; Mehta, S.K. ; Lin, Y.
Author_Institution :
Rensselaer Polytechnic Institute, Troy, NY
Volume :
3
fYear :
2003
fDate :
16-22 June 2003
Firstpage :
22
Lastpage :
22
Abstract :
The new non-parametric approach to unsegmented text recognition builds two bipartite graphs that result from the feature-level and lexical comparisons of the same word against a reference string which need not include the query word. The lexical graph preserves the relative order of edges in the feature graph corresponding to correctly recognized features. This observation leads to a subgraph-matching formulation of the recognition problem. An initial implementation proves the robustness of the approach for up-to 20% noise introduced in the feature-level graph.
Keywords :
Bipartite graph; Engines; Hidden Markov models; Noise robustness; Parameter estimation; Pattern matching; Pattern recognition; Signal representations; Text recognition; Wool;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2003. CVPRW '03. Conference on
Conference_Location :
Madison, Wisconsin, USA
ISSN :
1063-6919
Print_ISBN :
0-7695-1900-8
Type :
conf
DOI :
10.1109/CVPRW.2003.10028
Filename :
4624280
Link To Document :
بازگشت