• DocumentCode
    2828974
  • Title

    Computing 2D Periodic Centroidal Voronoi Tessellation

  • Author

    Yan, Dong-Ming ; Wang, Kai ; Lévy, Bruno ; Alonso, Laurent

  • Author_Institution
    Project ALICE, INRIA, Nancy, France
  • fYear
    2011
  • fDate
    28-30 June 2011
  • Firstpage
    177
  • Lastpage
    184
  • Abstract
    In this paper, we propose an efficient algorithm to compute the centroidal Voronoi tessellation in 2D periodic space. We first present a simple algorithm for constructing the periodic Voronoi diagram (PVD) from a Euclidean Voronoi diagram. The presented PVD algorithm considers only a small set of periodic copies of the input sites, which is more efficient than previous approaches requiring full copies of the sites (9 in 2D and 27 in 3D). The presented PVD algorithm is applied in a fast Newton-based framework for computing the centroidal Voronoi tessellation (CVT). We observe that full-hexagonal patterns can be obtained via periodic CVT optimization attributed to the convergence of the Newton-based CVT computation.
  • Keywords
    computational geometry; mesh generation; 2D periodic centroidal voronoi tessellation; CVT; Euclidean Voronoi diagram; Newton-based framework; PVD; periodic Voronoi diagram; Computational modeling; Convergence; Euclidean distance; Extraterrestrial measurements; Mirrors; Three dimensional displays; Delaunay triangulation; Periodic Voronoi diagram; centroidal Voronoi tessellation; hexagonal pattern;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Voronoi Diagrams in Science and Engineering (ISVD), 2011 Eighth International Symposium on
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-1-4577-1026-1
  • Electronic_ISBN
    978-0-7695-4483-0
  • Type

    conf

  • DOI
    10.1109/ISVD.2011.31
  • Filename
    5988933