• DocumentCode
    2832199
  • Title

    Mean field annealing EM for image segmentation

  • Author

    Cho, Wan-Hyun ; Kim, Soo-Hyung ; Park, Soon-Young ; Park, Jong-Hyun

  • Author_Institution
    Dept. of Stat. & Comput. Sci., Chonnam Nat. Univ., Kwangju, South Korea
  • Volume
    3
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    568
  • Abstract
    We present a statistical model-based approach to the color image segmentation. A novel deterministic annealing expectation-maximization (EM) and mean field theory are used to estimate the posterior probability of each pixel and the parameters of the Gaussian mixture model which represents the multi-colored objects statistically. Image segmentation is carried out by clustering each pixel into the most probable component Gaussian. The experimental results show that the mean field annealing EM provides a global optimal solution for the maximum likelihood parameter estimation and the real images are segmented efficiently using the estimates computed by the maximum entropy principle and mean field theory
  • Keywords
    image colour analysis; image segmentation; maximum entropy methods; maximum likelihood estimation; optimisation; Gaussian mixture model; color image segmentation; deterministic annealing; expectation-maximization algorithm; global optimal solution; maximum entropy principle; maximum likelihood parameter estimation; mean field theory; multi-colored objects; pixel clustering; posterior probability estimation; statistical model-based approach; Annealing; Clustering algorithms; Computer science; Density functional theory; Entropy; Image segmentation; Parameter estimation; Pixel; Probability distribution; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 2000. Proceedings. 2000 International Conference on
  • Conference_Location
    Vancouver, BC
  • ISSN
    1522-4880
  • Print_ISBN
    0-7803-6297-7
  • Type

    conf

  • DOI
    10.1109/ICIP.2000.899511
  • Filename
    899511