DocumentCode
2832199
Title
Mean field annealing EM for image segmentation
Author
Cho, Wan-Hyun ; Kim, Soo-Hyung ; Park, Soon-Young ; Park, Jong-Hyun
Author_Institution
Dept. of Stat. & Comput. Sci., Chonnam Nat. Univ., Kwangju, South Korea
Volume
3
fYear
2000
fDate
2000
Firstpage
568
Abstract
We present a statistical model-based approach to the color image segmentation. A novel deterministic annealing expectation-maximization (EM) and mean field theory are used to estimate the posterior probability of each pixel and the parameters of the Gaussian mixture model which represents the multi-colored objects statistically. Image segmentation is carried out by clustering each pixel into the most probable component Gaussian. The experimental results show that the mean field annealing EM provides a global optimal solution for the maximum likelihood parameter estimation and the real images are segmented efficiently using the estimates computed by the maximum entropy principle and mean field theory
Keywords
image colour analysis; image segmentation; maximum entropy methods; maximum likelihood estimation; optimisation; Gaussian mixture model; color image segmentation; deterministic annealing; expectation-maximization algorithm; global optimal solution; maximum entropy principle; maximum likelihood parameter estimation; mean field theory; multi-colored objects; pixel clustering; posterior probability estimation; statistical model-based approach; Annealing; Clustering algorithms; Computer science; Density functional theory; Entropy; Image segmentation; Parameter estimation; Pixel; Probability distribution; Statistics;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing, 2000. Proceedings. 2000 International Conference on
Conference_Location
Vancouver, BC
ISSN
1522-4880
Print_ISBN
0-7803-6297-7
Type
conf
DOI
10.1109/ICIP.2000.899511
Filename
899511
Link To Document