DocumentCode :
2833097
Title :
The iterative deconvolution of linearly blurred images using non-parametric stabilizing functions
Author :
Hare, James R. ; Reilly, James P.
Author_Institution :
Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
770
Abstract :
An iterative solution to the problem of image deconvolution is presented. The previous image estimate is pre-filtered using a stabilizing function that is updated based on current error and noise estimates. Noise propagation from one iteration to the next is reduced by the use of a second, regularizing operator resulting in a hybrid iteration technique. Further, error terms are developed that shed new light on the error propagation properties of this method by quantifying the extent of noise and regularization error propagation. Optimal non-parametric stabilizing and regularization functions are then derived based on this error analysis
Keywords :
deconvolution; error analysis; image processing; iterative methods; noise; numerical stability; optimisation; error estimate; error propagation properties; error terms; hybrid iteration technique; image deconvolution; image estimate; iterative deconvolution; iterative solution; linearly blurred images; noise error propagation; noise estimate; optimal nonparametric regularization functions; optimal nonparametric stabilizing functions; pre-filtered image; regularization error propagation; regularizing operator resulting; Computer errors; Deconvolution; Degradation; Discrete Fourier transforms; Error analysis; Error correction; Frequency domain analysis; Gaussian noise; Neural networks; Optical propagation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2000. Proceedings. 2000 International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1522-4880
Print_ISBN :
0-7803-6297-7
Type :
conf
DOI :
10.1109/ICIP.2000.899568
Filename :
899568
Link To Document :
بازگشت