• DocumentCode
    2836769
  • Title

    Breaking chaotic encryption using PDE´s

  • Author

    Jacobo, A. ; Soriano, M.C. ; Colet, P. ; Mirasso, C.

  • Author_Institution
    Inst. de Fis. Interdisciplinar y Sist. Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain
  • fYear
    2009
  • fDate
    14-19 June 2009
  • Firstpage
    1
  • Lastpage
    1
  • Abstract
    This work explores the possibility of using partial differential equations (PDE´s) in breaking chaotic encryption. The Ginzburg Landau equation (GLE) is considered in one dimension with an external forcing as a filter to find changes on the mean value and to recover the message. Results show that with this method the authorized receiver is able to recover the message, but the GLE filtering method completely fails to decode the message.
  • Keywords
    Ginzburg-Landau theory; chaotic communication; cryptography; decoding; optical communication; partial differential equations; Ginzburg Landau equation; chaotic communications; chaotic encryption; external forcing; filtering method; message decoding; message recovery; partial differential equations; Amplitude modulation; Chaos; Chaotic communication; Context; Cryptography; Equations; Filters; Jacobian matrices; Power lasers; Signal analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC 2009. European Conference on
  • Conference_Location
    Munich
  • Print_ISBN
    978-1-4244-4079-5
  • Electronic_ISBN
    978-1-4244-4080-1
  • Type

    conf

  • DOI
    10.1109/CLEOE-EQEC.2009.5194794
  • Filename
    5194794