DocumentCode :
2840184
Title :
Real time texture classification using field programmable gate arrays
Author :
Wall, Geoffrey ; Iqbal, Faizal ; Isaacs, Jason ; Liu, Xiuwen ; Foo, Simon
Author_Institution :
Center for Appl. Vision & Imaging Sci., Florida State Univ., Tallahassee, FL, USA
fYear :
2004
fDate :
13-15 Oct. 2004
Firstpage :
130
Lastpage :
135
Abstract :
In this paper we present a novel hardware/software approach to implement a highly accurate texture classification algorithm. We propose the use of field programmable gate arrays (FPGAs) to efficiently compute multiple convolutions in parallel that is required by the spectral histogram representation we employ. The combination of custom hardware and software allows us to have a classifier that is able to achieve results of over 99% accuracy at a rate of roughly 6000 image classifications per second on a challenging real texture dataset.
Keywords :
computer vision; convolution; field programmable gate arrays; image texture; pattern classification; field programmable gate arrays; multiple convolutions; real time texture classification; spectral histogram representation; Computer vision; Field programmable gate arrays; Filtering; Filters; Hardware; Histograms; Kernel; Machine intelligence; Pixel; Software algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
ISSN :
1550-5219
Print_ISBN :
0-7695-2250-5
Type :
conf
DOI :
10.1109/AIPR.2004.38
Filename :
1409687
Link To Document :
بازگشت